Enhancing Co2 mineralisation in steel slag with amines for developing a waste to construction material

dc.contributor.authorTakebe, K
dc.contributor.authorElakneswaran, Y
dc.contributor.authorYoda, Y
dc.contributor.authorKitagaki, R
dc.contributor.editorIresha, H
dc.contributor.editorElakneswaran, Y
dc.contributor.editorDassanayake, A
dc.contributor.editorJayawardena, C
dc.date.accessioned2024-12-23T03:40:00Z
dc.date.available2024-12-23T03:40:00Z
dc.date.issued2024
dc.description.abstractGlobal warming has become an urgent issue due to the increasing atmospheric emission of CO2. In Japan, the steel industry emits a large amount of CO₂ and produces steel slag as an alkaline waste product. Using this steel slag to absorb CO₂ in flue gas is an effective approach for CO₂ emissions and recycling. This study introduces a novel technology utilizing amines to facilitate CO₂ sequestration in blast furnace slag. This innovative approach demonstrates significant potential and flexibility compared to conventional CO₂ capture technologies. In this study, changes in the carbonation efficiency of slag with three types of amines (N-Methyldiethanolamine (MDEA), 2-(Methylamino)ethanol (MAE), 2-Amino-2-methyl-1-propanol (AMP)) were investigated. In addition, this study examined the effect of Portland cement on the carbonation efficiency. In wet carbonation, the CO₂ fixation process entails the introduction of 1 mol/L of amine, water, slag, and cement, followed by a 24-hour leaching process and subsequent 24-hour carbonation. The results showed that adding AMP and cement exhibited the most significant increase in carbonation efficiency, resulting in the formation of 11.07% of the solid weight as CaCO₃, as confirmed by thermogravimetric analysis (TGA). Changes in calcium ion concentration and pH were also investigated in this study. The results showed that a small amount of Ca²⁺ dissolution and an increase in pH occurred in the early stages of the reaction and that the majority of Ca²⁺ dissolution occurred simultaneously with carbonation. In dry carbonation, slag cement paste, made by mixing amine, slag, and cement, was carbonated for 28 days after a 28-day curing period to determine changes in its properties. W/S ratio is 10, slag/cement ratio is 19, amine concentration is 1 mol/L, and CO₂ concentration is 0%, 0.04%, 5%, and 15%. Strength tests showed an increase in strength in the slag cement paste with the addition of MDEA.en_US
dc.identifier.citationTakebe, K, Elakneswaran, Y., Yoda, Y., & Kitagaki, R., (2024). Enhancing co2 mineralisation in steel slag with amines for developing a waste to construction material. In H. Iresha, Y. Elakneswaran, A. Dassanayake, & C. Jayawardena (Ed.), Eight International Symposium on Earth Resources Management & Environment – ISERME 2024: Proceedings of the international Symposium on Earth Resources Management & Environment (pp. 249-251). Department of Earth Resources Engineering, University of Moratuwa. https://doi.org/10.31705/ISERME.2024.48
dc.identifier.conferenceEight International Symposium on Earth Resources Management & Environment - ISERME 2024en_US
dc.identifier.departmentDepartment of Earth Resources Engineeringen_US
dc.identifier.doihttps://doi.org/10.31705/ISERME.2024.48
dc.identifier.emailtakebe.kanta.e3@elms.hokudai.ac.jpen_US
dc.identifier.facultyEngineeringen_US
dc.identifier.issn2961-5372
dc.identifier.pgnospp. 249-251en_US
dc.identifier.placeHokkaido University, Japanen_US
dc.identifier.proceedingProceedings of International Symposium on Earth Resources Management and Environmenten_US
dc.identifier.urihttp://dl.lib.uom.lk/handle/123/23057
dc.identifier.year2024en_US
dc.language.isoenen_US
dc.publisherDivision of Sustainable Resources Engineering, Hokkaido University, Japanen_US
dc.subjectAmineen_US
dc.subjectSlagen_US
dc.subjectCO2en_US
dc.subjectCarbonationen_US
dc.subjectConstruction materialsen_US
dc.titleEnhancing Co2 mineralisation in steel slag with amines for developing a waste to construction materialen_US
dc.typeConference-Abstracten_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
249-251.pdf
Size:
190.18 KB
Format:
Adobe Portable Document Format
Description:
Enhancing co2 mineralisation in steel slag with amines for developing a waste to construction material

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections