Enhancing Co2 mineralisation in steel slag with amines for developing a waste to construction material
Loading...
Date
2024
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Division of Sustainable Resources Engineering, Hokkaido University, Japan
Abstract
Global warming has become an urgent issue due to the increasing atmospheric emission of CO2. In Japan, the steel industry emits a large amount of CO₂ and produces steel slag as an alkaline waste product. Using this steel slag to absorb CO₂ in flue gas is an effective approach for CO₂ emissions and recycling. This study introduces a novel technology utilizing amines to facilitate CO₂ sequestration in blast furnace slag. This innovative approach demonstrates significant potential and flexibility compared to conventional CO₂ capture technologies. In this study, changes in the carbonation efficiency of slag with three types of amines (N-Methyldiethanolamine (MDEA), 2-(Methylamino)ethanol (MAE), 2-Amino-2-methyl-1-propanol (AMP)) were investigated. In addition, this study examined the effect of Portland cement on the carbonation efficiency. In wet carbonation, the CO₂ fixation process entails the introduction of 1 mol/L of amine, water, slag, and cement, followed by a 24-hour leaching process and subsequent 24-hour carbonation. The results showed that adding AMP and cement exhibited the most significant increase in carbonation efficiency, resulting in the formation of 11.07% of the solid weight as CaCO₃, as confirmed by thermogravimetric analysis (TGA). Changes in calcium ion concentration and pH were also investigated in this study. The results showed that a small amount of Ca²⁺ dissolution and an increase in pH occurred in the early stages of the reaction and that the majority of Ca²⁺ dissolution occurred simultaneously with carbonation. In dry carbonation, slag cement paste, made by mixing amine, slag, and cement, was carbonated for 28 days after a 28-day curing period to determine changes in its properties. W/S ratio is 10, slag/cement ratio is 19, amine concentration is 1 mol/L, and CO₂ concentration is 0%, 0.04%, 5%, and 15%. Strength tests showed an increase in strength in the slag cement paste with the addition of MDEA.
Description
Keywords
Amine, Slag, CO2, Carbonation, Construction materials
Citation
Takebe, K, Elakneswaran, Y., Yoda, Y., & Kitagaki, R., (2024). Enhancing co2 mineralisation in steel slag with amines for developing a waste to construction material. In H. Iresha, Y. Elakneswaran, A. Dassanayake, & C. Jayawardena (Ed.), Eight International Symposium on Earth Resources Management & Environment – ISERME 2024: Proceedings of the international Symposium on Earth Resources Management & Environment (pp. 249-251). Department of Earth Resources Engineering, University of Moratuwa.
https://doi.org/10.31705/ISERME.2024.48