Dempster-Shafer Information Filtering Framework: Temporal and Spatio-Temporal Evidence Filtering

dc.contributor.authorWeeraddana, DM
dc.contributor.authorKulasekere, C
dc.contributor.authorWalgama, KS
dc.date.accessioned2023-02-27T03:45:15Z
dc.date.available2023-02-27T03:45:15Z
dc.date.issued2015
dc.description.abstractThis paper presents an information processing framework for Distributed Sensor Networks (DSNs). The framework is capable of directly processing temporally and spatially distributed multi-modality sensor data to extract information buried in the noise clutter. Moreover, we introduce distributed algorithms to implement Spatio-Temporal filtering applications in grid sensor networks within the context of the framework. The proposed framework is based on the belief notions in Dempster- Shafer (DS) evidence theory and Evidence Filtering method. Further analysis is done by exploiting a fire propagation scenario when high noise is present in the sensed data. We compare intuitively appealing results against Dempster-Shafer fusion method to grant further credence to the proposed framework.en_US
dc.identifier.citationWeeraddana, D. M., Kulasekere, C., & Walgama, K. S. (2015). Dempster–Shafer Information Filtering Framework: Temporal and Spatio-Temporal Evidence Filtering. IEEE Sensors Journal, 15(10), 5576–5583. https://doi.org/10.1109/JSEN.2015.2442153en_US
dc.identifier.databaseIEEE Xploreen_US
dc.identifier.doihttps://doi.org/10.1109/JSEN.2015.2442153en_US
dc.identifier.issn1530-437Xen_US
dc.identifier.issue10en_US
dc.identifier.journalIEEE Sensors Journalen_US
dc.identifier.pgnos5576 - 5583en_US
dc.identifier.urihttp://dl.lib.uom.lk/handle/123/20621
dc.identifier.volume15en_US
dc.identifier.year2015en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.subjectDempster-Shafer belief vectorsen_US
dc.subjectDempster-Shafer formalismen_US
dc.subjectEvidence filteringen_US
dc.subjectMulti modality sensor fusionen_US
dc.subjectSeverity of emergencyen_US
dc.subjectWireless Sensor Networken_US
dc.titleDempster-Shafer Information Filtering Framework: Temporal and Spatio-Temporal Evidence Filteringen_US
dc.typeArticle-Full-texten_US

Files