Computational modelling of synaptic plasticity: a review of models, parameter estimation using deep learning, and stochasticity
dc.contributor.author | Kumarapathirana, KPSD | |
dc.contributor.author | Kulasiri, D | |
dc.contributor.author | Samarasinghe, S | |
dc.contributor.author | Liang, J | |
dc.contributor.editor | Ganegoda, GU | |
dc.contributor.editor | Mahadewa, KT | |
dc.date.accessioned | 2022-11-10T03:57:37Z | |
dc.date.available | 2022-11-10T03:57:37Z | |
dc.date.issued | 2021 | |
dc.description.abstract | It is imperative to understand the human memory formation and impairment to treat dementia effectively. There is ample scientific evidence that memory formation is strongly correlated to synaptic connections. Synaptic plasticity reflects the strength of these connections and is strongly related to memory formation and impairment. The complexity in the signalling pathways and interactions among proteins demands a systemic approach to study synaptic plasticity. Hence systems biology approaches are used in computational neuroscience. In this paper, we review the key computational models related to synaptic plasticity, the use of deep learning in parameter estimation, and the incorporation of epistemic stochasticity in the models. | en_US |
dc.identifier.citation | K. P. S. D. Kumarapathirana, D. Kulasiri, S. Samarasinghe and J. Liang, "Computational Modelling of Synaptic Plasticity: A review of models, parameter estimation using deep learning, and stochasticity," 2021 6th International Conference on Information Technology Research (ICITR), 2021, pp. 1-7, doi: 10.1109/ICITR54349.2021.9657166. | en_US |
dc.identifier.conference | 6th International Conference in Information Technology Research 2021 | en_US |
dc.identifier.department | Information Technology Research Unit, Faculty of Information Technology, University of Moratuwa. | en_US |
dc.identifier.doi | 10.1109/ICITR54349.2021.9657166 | en_US |
dc.identifier.faculty | IT | en_US |
dc.identifier.place | Moratuwa, Sri Lanka | en_US |
dc.identifier.proceeding | Proceedings of the 6th International Conference in Information Technology Research 2021 | en_US |
dc.identifier.uri | http://dl.lib.uom.lk/handle/123/19460 | |
dc.identifier.year | 2021 | en_US |
dc.language.iso | en | en_US |
dc.publisher | Faculty of Information Technology, University of Moratuwa. | en_US |
dc.relation.uri | https://ieeexplore.ieee.org/document/9657166 | en_US |
dc.subject | Synaptic plasticity | en_US |
dc.subject | Synaptic transmission | en_US |
dc.subject | Memory formation | en_US |
dc.subject | Computational modelling | en_US |
dc.subject | Stochastic modelling | en_US |
dc.subject | Parameter estimation | en_US |
dc.title | Computational modelling of synaptic plasticity: a review of models, parameter estimation using deep learning, and stochasticity | en_US |
dc.type | Conference-Full-text | en_US |