Computational modelling of synaptic plasticity: a review of models, parameter estimation using deep learning, and stochasticity

dc.contributor.authorKumarapathirana, KPSD
dc.contributor.authorKulasiri, D
dc.contributor.authorSamarasinghe, S
dc.contributor.authorLiang, J
dc.contributor.editorGanegoda, GU
dc.contributor.editorMahadewa, KT
dc.date.accessioned2022-11-10T03:57:37Z
dc.date.available2022-11-10T03:57:37Z
dc.date.issued2021
dc.description.abstractIt is imperative to understand the human memory formation and impairment to treat dementia effectively. There is ample scientific evidence that memory formation is strongly correlated to synaptic connections. Synaptic plasticity reflects the strength of these connections and is strongly related to memory formation and impairment. The complexity in the signalling pathways and interactions among proteins demands a systemic approach to study synaptic plasticity. Hence systems biology approaches are used in computational neuroscience. In this paper, we review the key computational models related to synaptic plasticity, the use of deep learning in parameter estimation, and the incorporation of epistemic stochasticity in the models.en_US
dc.identifier.citationK. P. S. D. Kumarapathirana, D. Kulasiri, S. Samarasinghe and J. Liang, "Computational Modelling of Synaptic Plasticity: A review of models, parameter estimation using deep learning, and stochasticity," 2021 6th International Conference on Information Technology Research (ICITR), 2021, pp. 1-7, doi: 10.1109/ICITR54349.2021.9657166.en_US
dc.identifier.conference6th International Conference in Information Technology Research 2021en_US
dc.identifier.departmentInformation Technology Research Unit, Faculty of Information Technology, University of Moratuwa.en_US
dc.identifier.doi10.1109/ICITR54349.2021.9657166en_US
dc.identifier.facultyITen_US
dc.identifier.placeMoratuwa, Sri Lankaen_US
dc.identifier.proceedingProceedings of the 6th International Conference in Information Technology Research 2021en_US
dc.identifier.urihttp://dl.lib.uom.lk/handle/123/19460
dc.identifier.year2021en_US
dc.language.isoenen_US
dc.publisherFaculty of Information Technology, University of Moratuwa.en_US
dc.relation.urihttps://ieeexplore.ieee.org/document/9657166en_US
dc.subjectSynaptic plasticityen_US
dc.subjectSynaptic transmissionen_US
dc.subjectMemory formationen_US
dc.subjectComputational modellingen_US
dc.subjectStochastic modellingen_US
dc.subjectParameter estimationen_US
dc.titleComputational modelling of synaptic plasticity: a review of models, parameter estimation using deep learning, and stochasticityen_US
dc.typeConference-Full-texten_US

Files

Collections