A machine learning approach for nilm based on superimposed current profiles

dc.contributor.authorAbeykoon, AMHS
dc.contributor.authorPerera, APS
dc.contributor.authorSanjeewika, RK
dc.contributor.authorMatharage, MDNV
dc.contributor.authorAbeysinghe, AP
dc.contributor.editorWeeraddana, C
dc.contributor.editorEdussooriya, CUS
dc.contributor.editorAbeysooriya, RP
dc.date.accessioned2022-08-05T04:31:35Z
dc.date.available2022-08-05T04:31:35Z
dc.date.issued2020-07
dc.description.abstractThis research focuses on identifying a new implementation of a machine learning approach for Nonintrusive load monitoring (NILM). We mathematically superimpose current profiles of individual appliances and compare against the actual combinational current profiles. This simple yet effective method is tested on combinations of 6 household devices in a typical low voltage residential installation and the high accuracy of correct identification confirms the proposed method is feasible. The proposed method eases the burden of the training phase which is considered as an inherent limitation of all supervised deep learning NILM models. We deploy the method on a Raspberry Pi 3 providing a solution to increase the scalability of NILMen_US
dc.identifier.citation*******en_US
dc.identifier.departmentEngineering Research Unit, University of Moratuwaen_US
dc.identifier.doi10.1109/MERCon50084.2020.9185203en_US
dc.identifier.emailharsha@uom.lken_US
dc.identifier.emailpaveenperera@gmail.comen_US
dc.identifier.emailpaveenperera@gmail.comen_US
dc.identifier.emailasitha169gmail.comen_US
dc.identifier.emailnisalvm@gmail.comen_US
dc.identifier.facultyEngineeringen_US
dc.identifier.pgnospp. 584-589en_US
dc.identifier.placeMoratuwa, Sri Lankaen_US
dc.identifier.proceedingProceedings of Moratuwa Engineering Research Conference 2020en_US
dc.identifier.urihttp://dl.lib.uom.lk/handle/123/18515
dc.identifier.year2020en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.urihttps://ieeexplore.ieee.org/document/9185203en_US
dc.subjectPower signature analysisen_US
dc.subjectMachine learningen_US
dc.subjectNILMen_US
dc.subjectLoad identificationen_US
dc.titleA machine learning approach for nilm based on superimposed current profilesen_US
dc.typeConference-Full-texten_US

Files

Collections