Deep learning-based automatic building types classification for transport planning

dc.contributor.authorKhatua, A
dc.contributor.authorGoswami, AK
dc.contributor.authorAithal, BH
dc.contributor.editorGunaruwan, TL
dc.date.accessioned2023-10-12T07:59:52Z
dc.date.available2023-10-12T07:59:52Z
dc.date.issued2023-08-26
dc.description.abstractThe present study proposes a building classification algorithm that uses deep learning techniques, namely object detection and image segmentation, to distinguish between residential and commercial structures. The algorithm is trained using images from the ISPRS Potsdam and Spacenet 3 (Vegas) datasets. According to the model's results, the model has obtained high precision, recall, and mean average precision (mAP) values for both classes. Despite the high-performance yield of the model, the robustness the model can be improved by expanding the training dataset to include more building images from diverse locations on Earth.en_US
dc.identifier.citation**en_US
dc.identifier.conferenceResearch for Transport and Logistics Industry Proceedings of the 8th International Conferenceen_US
dc.identifier.departmentDepartment of Transport and Logistics Managementen_US
dc.identifier.email1aaniruddha4@kgpian.iitkgp.ac.inen_US
dc.identifier.emailakgoswami@infra.iitkgp.ac.inen_US
dc.identifier.emailbharath@infra.iitkgp.ac.inen_US
dc.identifier.facultyEngineeringen_US
dc.identifier.pgnospp. 183-185en_US
dc.identifier.placeMoratuwa, Sri Lankaen_US
dc.identifier.proceedingProceedings of the International Conference on Research for Transport and Logistics Industryen_US
dc.identifier.urihttp://dl.lib.uom.lk/handle/123/21560
dc.identifier.year2023en_US
dc.language.isoenen_US
dc.publisherSri Lanka Society of Transport and Logisticsen_US
dc.relation.urihttps://slstl.lk/r4tli-2023/en_US
dc.subjectImage segmentationen_US
dc.subjectLand use classificationen_US
dc.subjectTransportation planningen_US
dc.subjectYOLOv8en_US
dc.titleDeep learning-based automatic building types classification for transport planningen_US
dc.typeConference-Full-texten_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DEEP LEARNING-BASED AUTOMATIC BUILDING TYPES.pdf
Size:
275.33 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections