Development of a photosensor based on photo dielectric effect of cadmium sulphide

Loading...
Thumbnail Image

Date

2019-01

Journal Title

Journal ISSN

Volume Title

Publisher

Department of Materials Science and Engineering

Abstract

A photosensor is an electronic component that detects the presence of visible light, infrared transmission (IR), and/or ultraviolet (UV) energy. A photosensor which changes its electrical capacitance in the presence of visible light was developed based on the photo-dielectric effect of Cadmium Sulphide (CdS). This photosensor was fabricated by depositing a CdS thin film on Fluorine-doped Tin Oxide glass (FTO glass). FTO acts as the front electrical contact and an aluminum sheet acts as the back contact, where a 2.0)im - 3.0)im thick CdS thin film acts as the photo-dielectric material. Chemical bath deposition method was used for CdS fabrication and the CdS thin film with optimum photovoltaic and micro structural properties was obtained at a bath temperature interval of 40 - 45 °C, annealing temperature of 180-220 °C. Film thickness was varied by adjusting deposition time and the number of coatings. Thickness variations were determined using a Scanning Electron Microscope (SEM). The transmittance and absorbance spectra are recorded in the range of 200 nm - 1100 nm. CdS thin film fabricated under optimum conditions resulted in a bandgap in the range of 2.30 eV-2.40 eV, which is closely agreeing to the theoretical value of 2.42eV. The photo-capacitance and photoconductivity were measured in a frequency range of 1 kHz to 5 MHz in dark and illuminated conditions. The Cole-Cole plots were analyzed to identify the most sensitive operational frequency for the device.

Description

Keywords

Chemical bath deposition, Cadmium sulphide (CdS),, Bandgap and dielectric study

Citation

Kumari, T.I.D., Jayasumana, M.A.S.D., & Attygalle, D. (2019). Development of a photosensor based on photo dielectric effect of cadmium sulphide [Abstract]. In V. Sivahar & H.S. Sitinamaluwa (Eds.), Dreams to reality through innovative materials (p. 3). Department of Materials Science and Engineering, University of Moratuwa.

DOI

Collections