Automated vehicle parking occupancy detection in real-time

dc.contributor.authorPadmasiri, H
dc.contributor.authorMadurawe, R
dc.contributor.authorAbeysinghe, C
dc.contributor.authorMeedeniya, D
dc.contributor.editorWeeraddana, C
dc.contributor.editorEdussooriya, CUS
dc.contributor.editorAbeysooriya, RP
dc.date.accessioned2022-08-03T05:42:58Z
dc.date.available2022-08-03T05:42:58Z
dc.date.issued2020-07
dc.description.abstractParking occupancy detection systems help to identify the available parking spaces and direct vehicles efficiently to unoccupied lots by reducing time and energy. This paper presents an approach for the design and development of an end-to-end automated vehicle parking occupancy detection system. The novelty of this study lies in the methodology followed for the object detection process using RetinaNet one stage detector and region-based convolutional neural network deep learning technique. The proposed software architecture consists of low coupled components that support scalability and reliability. The developed web-based and mobile-based client applications assist to find parking spaces easily and efficiently. The existing solutions utilize dedicated sensors and depend on manual segmentation of surveillance footage to detect the state of parking spaces. The proposed approach eliminates existing limitations while maintaining reasonable accuracy.en_US
dc.identifier.citation*******en_US
dc.identifier.conferenceMoratuwa Engineering Research Conference 2020en_US
dc.identifier.departmentEngineering Research Unit, University of Moratuwaen_US
dc.identifier.doi10.1109/MERCon50084.2020.9185199en_US
dc.identifier.emailheshanpadmasiri.16@cse.mrt.ac.lken_US
dc.identifier.emailranikamadurawe.16@cse.mrt.ac.lken_US
dc.identifier.emailchamath@cse.mrt.ac.lken_US
dc.identifier.emailchamath@cse.mrt.ac.lken_US
dc.identifier.facultyEngineeringen_US
dc.identifier.pgnospp. 644-649en_US
dc.identifier.placeMoratuwa, Sri Lankaen_US
dc.identifier.proceedingProceedings of Moratuwa Engineering Research Conference 2020en_US
dc.identifier.urihttp://dl.lib.uom.lk/handle/123/18499
dc.identifier.year2020en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.urihttps://ieeexplore.ieee.org/document/9185336en_US
dc.subjectObject detectionen_US
dc.subjectcomputer visionen_US
dc.subjectcloud computingen_US
dc.subjectmicroservice architectureen_US
dc.titleAutomated vehicle parking occupancy detection in real-timeen_US
dc.typeConference-Full-texten_US

Files

Collections