Development of ai-based optimum energy resource management system for prosumers with solar rooftops

dc.contributor.authorWeerasekara, DHNR
dc.contributor.authorWella Arachchi, WAPK
dc.contributor.authorWellala, SRG
dc.contributor.authorRodrigo, AS
dc.contributor.editorAbeysooriya, R
dc.contributor.editorAdikariwattage, V
dc.contributor.editorHemachandra, K
dc.date.accessioned2024-03-22T08:41:47Z
dc.date.available2024-03-22T08:41:47Z
dc.date.issued2023-12-09
dc.description.abstractSolar installations are becoming popular around the world and have emerged as a promising solution to address the increased energy needs while reducing carbon emissions. To harness the full potential of solar photovoltaic (PV) systems, efficient resource management systems play a vital role. This research paper proposes an efficient solar PV energy resource management system to optimize performance and increase the profits of the prosumers. Utility providers have introduced several tariff systems for the financial motivation of customers. In the proposed method, the load demand and Solar PV generation are forecasted for the next 48 hours using the Long Short-Term Memory (LSTM) model. Then, the cost function is optimized using the Sequential Least Squares Programming (SLSQP) algorithm, and an energy dispatch schedule is provided for the customer. The results of the study show that the electricity cost is reduced for the prosumer by the proposed method than the conventional rule-based energy management systems.en_US
dc.identifier.citationD. H. N. R. Weerasekara, W. A. P. K. Wella Arachchi, S. R. G. Wellala and A. S. Rodrigo, "Development of AI-Based Optimum Energy Resource Management System for Prosumers with Solar Rooftops," 2023 Moratuwa Engineering Research Conference (MERCon), Moratuwa, Sri Lanka, 2023, pp. 7-12, doi: 10.1109/MERCon60487.2023.10355519.en_US
dc.identifier.conferenceMoratuwa Engineering Research Conference 2023en_US
dc.identifier.departmentEngineering Research Unit, University of Moratuwaen_US
dc.identifier.emailhirushiweerasekara@gmail.comen_US
dc.identifier.emailpavithrasakun@gmail.comen_US
dc.identifier.emailsavinranganath@gmail.comen_US
dc.identifier.emailasankar@uom.lken_US
dc.identifier.facultyEngineeringen_US
dc.identifier.pgnospp. 4-12en_US
dc.identifier.placeKatubeddaen_US
dc.identifier.proceedingProceedings of Moratuwa Engineering Research Conference 2023en_US
dc.identifier.urihttp://dl.lib.uom.lk/handle/123/22386
dc.identifier.year2023en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.urihttps://ieeexplore.ieee.org/document/10355519/en_US
dc.subjectHybrid solar PV Systemen_US
dc.subjectSLSQPen_US
dc.subjectLSTMen_US
dc.subjectResource management systemen_US
dc.titleDevelopment of ai-based optimum energy resource management system for prosumers with solar rooftopsen_US
dc.typeConference-Full-texten_US

Files

Collections