Q-learning approach for load-balancing in software defined networks

dc.contributor.authorTennakoon, D
dc.contributor.authorKarunarathna, S
dc.contributor.authorUdugama, B
dc.contributor.editorChathuranga, D
dc.date.accessioned2022-09-02T05:12:55Z
dc.date.available2022-09-02T05:12:55Z
dc.date.issued2018-05
dc.description.abstractIn this paper, we propose a Q-Learning approach for load balancing in Software Defined Networks to reduce the number of Unsatisfied Users in a 5G network. This solution integrates Q-Learning techniques with a fairness function to improve the user experience at peak traffic conditions. With typical high rates offered by 5G and future networks single user behavior shall have a significant impact on the Quality of Service (QoS) on the rest of the users. Therefore, we are in need of responsive networks based on their utilization and on the number of users occupied. In this paper we classify users into different groups and normalize the resources to provide the best QoS. The simulation results verify the improvement in terms of the number of Unsatisfied Users and of the connections dropped. Additionally, it enhances per-flow resource allocation while avoiding over-utilization of certain network resources. In a nutshell, this proposal will serve any future network with high traffic conditions to deliver the best QoS to their end users.en_US
dc.identifier.citationD. Tennakoon, S. Karunarathna and B. Udugama, "Q-learning Approach for Load-balancing in Software Defined Networks," 2018 Moratuwa Engineering Research Conference (MERCon), 2018, pp. 1-6, doi: 10.1109/MERCon.2018.8421895.en_US
dc.identifier.conference2018 Moratuwa Engineering Research Conference (MERCon)en_US
dc.identifier.departmentEngineering Research Unit, University of Moratuwaen_US
dc.identifier.doi10.1109/MERCon.2018.8421895en_US
dc.identifier.emaildeepal@ce.pdn.ac.lken_US
dc.identifier.emailnamal@ce.pdn.ac.lken_US
dc.identifier.emailbrianu@ce.pdn.ac.lken_US
dc.identifier.facultyEngineeringen_US
dc.identifier.pgnospp. 1-6en_US
dc.identifier.placeMoratuwa, Sri Lankaen_US
dc.identifier.proceedingProceedings of 2018 Moratuwa Engineering Research Conference (MERCon)en_US
dc.identifier.urihttp://dl.lib.uom.lk/handle/123/18865
dc.identifier.year2018en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.urihttps://ieeexplore.ieee.org/document/8421895/en_US
dc.subjectLoad-balancingen_US
dc.subjectQ-learningen_US
dc.subjectQoSen_US
dc.subjectSDNen_US
dc.titleQ-learning approach for load-balancing in software defined networksen_US
dc.typeConference-Full-texten_US

Files

Collections