Alzheimer’s disease prediction using clinical data approach

dc.contributor.authorPerera, LRD
dc.contributor.authorGanegoda, GU
dc.contributor.editorPiyatilake, ITS
dc.contributor.editorThalagala, PD
dc.contributor.editorGanegoda, GU
dc.contributor.editorThanuja, ALARR
dc.contributor.editorDharmarathna, P
dc.date.accessioned2024-02-06T06:07:02Z
dc.date.available2024-02-06T06:07:02Z
dc.date.issued2023-12-07
dc.description.abstractAlzheimer's Disease (AD) is a progressive neurodegenerative condition that profoundly affects cognition and memory. Due to the absence of curative treatments, early detection and prediction are crucial for effective intervention. This study employs machine learning and clinical data from Alzheimer's Disease Neuroimaging Initiative (ADNI) to predict AD onset. Data preprocessing ensures quality through variable selection and feature extraction. Diverse machine learning algorithms, including Naive Bayes, logistic regression, SVM-Linear, random forest, Gradient Boosting, and Decision Trees, are evaluated for prediction accuracy. The model resulted with random forest classifier together with filter method yields the highest AUC. The study highlights important analysis using Random Forest and Decision Trees, revealing significant variables including cognitive tests, clinical scales, demographics, brain-related metrics, and key biomarkers. By enhancing predictive capabilities, this research contributes to advancing Alzheimer's disease diagnosis and intervention strategies.en_US
dc.identifier.conference8th International Conference in Information Technology Research 2023en_US
dc.identifier.departmentInformation Technology Research Unit, Faculty of Information Technology, University of Moratuwa.en_US
dc.identifier.emailrashmildp@gmail.comen_US
dc.identifier.emailupekshag@uom.lken_US
dc.identifier.facultyITen_US
dc.identifier.pgnospp. 1-6en_US
dc.identifier.placeMoratuwa, Sri Lankaen_US
dc.identifier.proceedingProceedings of the 8th International Conference in Information Technology Research 2023en_US
dc.identifier.urihttp://dl.lib.uom.lk/handle/123/22184
dc.identifier.year2023en_US
dc.language.isoenen_US
dc.publisherInformation Technology Research Unit, Faculty of Information Technology, University of Moratuwa.en_US
dc.subjectMachine learningen_US
dc.subjectSupervised leaningen_US
dc.subjectFeature importanceen_US
dc.titleAlzheimer’s disease prediction using clinical data approachen_US
dc.typeConference-Full-texten_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Alzheimer’s disease prediction using.pdf
Size:
279.22 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections