Forecasting critical dry spell lengths in anamaduwa

dc.contributor.authorMathugama, SC
dc.contributor.authorPeiris, S
dc.date.accessioned2013-10-21T02:12:51Z
dc.date.available2013-10-21T02:12:51Z
dc.date.issued2010
dc.description.abstractSeries of critical dry spell lengths in 56 years in Anamaduwa are analysed to predict the length of critical dry spells Both linear and nonlinear lime series approaches are tried to identify the best Jilted model By comparing various statistical indicators, bilinear model with auto regressive errors of order four is found to be the best model lo lit die critical dry spell lengths.
dc.identifier.conferenceResearch for Industry
dc.identifier.pgnospp. 240-241
dc.identifier.placeFaculty of Engineering, University of Moratuwa
dc.identifier.proceeding16th Annual symposium on Research and Industry
dc.identifier.urihttp://dl.lib.mrt.ac.lk/handle/123/8239
dc.identifier.year2010
dc.languageen
dc.titleForecasting critical dry spell lengths in anamaduwa
dc.typeConference-Extended-Abstract

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Plain Text
Description:

Collections