Machine learning approach to recognize subject based sentiment values of reviews

dc.contributor.authorDe Mel, NM
dc.contributor.authorHettiarachchi, HH
dc.contributor.authorMadusanka, WPD
dc.contributor.authorMalaka, GL
dc.contributor.authorPerera, AS
dc.contributor.authorKohomban, U
dc.contributor.editorJayasekara, AGBP
dc.contributor.editorBandara, HMND
dc.contributor.editorAmarasinghe, YWR
dc.date.accessioned2022-09-09T03:05:51Z
dc.date.available2022-09-09T03:05:51Z
dc.date.issued2016-04
dc.description.abstractDue to the increase in the number of people participating online on reviewing travel related entities such as hotels, cities and attractions, there is a rich corpus of textual information available online. However, to make a decision on a certain entity, one has to read many such reviews manually, which is inconvenient. To make sense of the reviews, the essential first step is to understand the semantics that lie therein. This paper discusses a system that uses machine learning based classifiers to label the entities found in text into semantic concepts defined in an ontology. A subject classifier with a precision of 0.785 and a sentiment classifier with a correlation coefficient of 0.9423 was developed providing sufficient accuracy for subject categorization and sentiment evaluation in the proposed system.en_US
dc.identifier.citationN. M. De Mel, H. H. Hettiarachchi, W. P. D. Madusanka, G. L. Malaka, A. S. Perera and U. Kohomban, "Machine learning approach to recognize subject based sentiment values of reviews," 2016 Moratuwa Engineering Research Conference (MERCon), 2016, pp. 6-11, doi: 10.1109/MERCon.2016.7480107.en_US
dc.identifier.conference2016 Moratuwa Engineering Research Conference (MERCon)en_US
dc.identifier.departmentEngineering Research Unit, University of Moratuwaen_US
dc.identifier.doi10.1109/MERCon.2016.7480107en_US
dc.identifier.emailmadhawi.11@cse.mrt.ac.lken_US
dc.identifier.emailhansi.11@cse.mrt.ac.lken_US
dc.identifier.emaildanushka.11@cse.mrt.ac.lken_US
dc.identifier.emailglmalaka.11@cse.mrt.ac.lken_US
dc.identifier.emailshehang@cse.mrt.ac.lken_US
dc.identifier.emailupali@codegen.co.uken_US
dc.identifier.facultyEngineeringen_US
dc.identifier.pgnospp. 6-11en_US
dc.identifier.placeMoratuwa, Sri Lankaen_US
dc.identifier.proceedingProceedings of 2016 Moratuwa Engineering Research Conference (MERCon)en_US
dc.identifier.urihttp://dl.lib.uom.lk/handle/123/18996
dc.identifier.year2016en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.urihttps://ieeexplore.ieee.org/document/7480107/en_US
dc.subjectText classificationen_US
dc.subjectsentiment analysisen_US
dc.subjectmachine learningen_US
dc.subjectfeature engineeringen_US
dc.titleMachine learning approach to recognize subject based sentiment values of reviewsen_US
dc.typeConference-Full-texten_US

Files

Collections