Nids based random model to protected big data environment using spark

dc.contributor.authorPrema, S
dc.contributor.authorAsokkumar, S
dc.date.accessioned2019-08-15T04:48:25Z
dc.date.available2019-08-15T04:48:25Z
dc.description.abstractBig Data is an active business across the world. With the growing size of data comes many challenges connected with handing out and ensuring the security of huge data. In this paper, we propose a Network Intrusion Detection System (NIDS) model based Random Forests (RF) classifier for anomaly detection of the collected network traffic. In order to decrease the computational time connected with the bulk of captured data, we utilize the system of Hadoop, MapReduce and Spark that have proven to be among the most efficient and fault-tolerant systems. We use the NSL KDD cup 99 dataset to perform experimental analysis and Non-dominated Sorting Genetic Algorithm-II (NSGA-II) for feature selection over this dataset. .en_US
dc.identifier.conferenceInternational Conference on Business Researchen_US
dc.identifier.facultyotheren_US
dc.identifier.pgnos122-132en_US
dc.identifier.placeMoratuwaen_US
dc.identifier.urihttp://dl.lib.mrt.ac.lk/handle/123/14757
dc.identifier.year2019en_US
dc.language.isoenen_US
dc.subjectBig dataen_US
dc.subjectNIDSen_US
dc.subjectNSGA-IIen_US
dc.subjectRandom Forestsen_US
dc.subjectSparken_US
dc.subjectHadoopen_US
dc.subjectMapReduceen_US
dc.titleNids based random model to protected big data environment using sparken_US
dc.typeConference-Full-texten_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-10.pdf
Size:
468.63 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections