Forest sound classification dataset: FSC22

dc.contributor.authorBandara, M
dc.contributor.authorJayasundara, R
dc.contributor.authorAriyarathne, I
dc.contributor.authorMeedeniya, D
dc.contributor.authorPerera, C
dc.date.accessioned2023-12-01T08:41:18Z
dc.date.available2023-12-01T08:41:18Z
dc.date.issued2023
dc.description.abstractThe study of environmental sound classification (ESC) has become popular over the years due to the intricate nature of environmental sounds and the evolution of deep learning (DL) techniques. Forest ESC is one use case of ESC, which has been widely experimented with recently to identify illegal activities inside a forest. However, at present, there is a limitation of public datasets specific to all the possible sounds in a forest environment. Most of the existing experiments have been done using generic environment sound datasets such as ESC-50, U8K, and FSD50K. Importantly, in DL-based sound classification, the lack of quality data can cause misguided information, and the predictions obtained remain questionable. Hence, there is a requirement for a well-defined benchmark forest environment sound dataset. This paper proposes FSC22, which fills the gap of a benchmark dataset for forest environmental sound classification. It includes 2025 sound clips under 27 acoustic classes, which contain possible sounds in a forest environment. We discuss the procedure of dataset preparation and validate it through different baseline sound classification models. Additionally, it provides an analysis of the new dataset compared to other available datasets. Therefore, this dataset can be used by researchers and developers who are working on forest observatory tasks.en_US
dc.identifier.citationBandara, M., Jayasundara, R., Ariyarathne, I., Meedeniya, D., & Perera, C. (2023). Forest Sound Classification Dataset: FSC22. Sensors, 23(4), Article 4. https://doi.org/10.3390/s23042032en_US
dc.identifier.databaseMDPIen_US
dc.identifier.doihttps://doi.org/10.3390/s23042032en_US
dc.identifier.issn1424-8220en_US
dc.identifier.issue4en_US
dc.identifier.journalSensorsen_US
dc.identifier.pgnos2032en_US
dc.identifier.urihttp://dl.lib.uom.lk/handle/123/21880
dc.identifier.volume23en_US
dc.identifier.year2023en_US
dc.language.isoenen_US
dc.publisherMultidisciplinary Digital Publishing Instituteen_US
dc.subjectforest acoustic dataseten_US
dc.subjectenvironment sound classificationen_US
dc.subjectmachine learningen_US
dc.subjectFreesounden_US
dc.subjectdeep learningen_US
dc.titleForest sound classification dataset: FSC22en_US
dc.typeArticle-Full-texten_US

Files