Topic-based hierarchical Bayesian linear regression models for niche items recommendation

dc.contributor.authorLiu, Y
dc.contributor.authorXiong, Q
dc.contributor.authorSun, J
dc.contributor.authorJiang, Y
dc.contributor.authorSilva, T
dc.contributor.authorLing, H
dc.date.accessioned2023-04-20T05:07:13Z
dc.date.available2023-04-20T05:07:13Z
dc.date.issued2019
dc.description.abstractA vital research concern for a personalised recommender system is to target items in the long tail. Studies have shown that sales of the e-commerce platform possess a long-tail character, and niche items in the long tail are challenging to be involved in the recommendation list. Since niche items are defined by the niche market, which is a small market segment, traditional recommendation algorithms focused more on popular items promotion and they do not apply to the niche market. In this article, we aim to find the best users for each niche item and proposed a topic-based hierarchical Bayesian linear regression model for niche item recommendation. We first identify niche items and build niche item subgroups based on descriptive information of items. Moreover, we learn a hierarchical Bayesian linear regression model for each niche item subgroup. Finally, we predict the relevance between users and niche items to provide recommendations. We perform a series of validation experiments on Yahoo Movies dataset and compare the performance of our approach with a set of representative baseline recommender algorithms. The result demonstrates the superior performance of our recommendation approach for niche items.en_US
dc.identifier.citationLiu, Y., Xiong, Q., Sun, J., Jiang, Y., Silva, T., & Ling, H. (2019). Topic-based hierarchical Bayesian linear regression models for niche items recommendation. Journal of Information Science, 45(1), 92–104. https://doi.org/10.1177/0165551518782831en_US
dc.identifier.doihttps://doi.org/10.1177/0165551518782831en_US
dc.identifier.issue1en_US
dc.identifier.journalJournal of Information Scienceen_US
dc.identifier.pgnos92-104en_US
dc.identifier.urihttp://dl.lib.uom.lk/handle/123/20889
dc.identifier.volume45en_US
dc.identifier.year2019en_US
dc.language.isoenen_US
dc.publisherSAGE Publications Incen_US
dc.subjectExpectation-maximisation algorithmen_US
dc.subjectHierarchical bayesian linear regression modelsen_US
dc.subjectniche item recommendationen_US
dc.subjectPersonalised recommendationen_US
dc.titleTopic-based hierarchical Bayesian linear regression models for niche items recommendationen_US
dc.typeArticle-Full-texten_US

Files