Gpu acceleration of logistic regression with cuda

dc.contributor.authorMadhawa, PKK
dc.contributor.authorJeevananda, MS
dc.contributor.authorMalmi, PMBC
dc.contributor.authorSandaruwan, URV
dc.contributor.authorWimalawarne, K
dc.contributor.editorWeerawardhana, S
dc.contributor.editorMadusanka, A
dc.contributor.editorDilrukshi, T
dc.contributor.editorAravinda, H
dc.date.accessioned2022-12-05T06:20:15Z
dc.date.available2022-12-05T06:20:15Z
dc.date.issued2011-11
dc.description.abstractLogistic regression (LR) is a widely used machine learning algorithm. It is regarded unsuitably slow for high dimensional problems compared to other machine learning algorithms such as SVM, decision trees and Bayes classifier. In this paper we utilize the data parallel nature of the algorithm to implement it on NVidia GPUs. We have implemented this GPU-based LR on the newest generation GPU with Compute Unified Device Architecture (CUDA). Our GPU implementation is based on BFGS optimization method. This implementation was extended to multiple GPU and cluster environment. This paper describes the performance gain while using GPU environment.en_US
dc.identifier.citation******en_US
dc.identifier.conferenceCS & ES Conference 2011en_US
dc.identifier.departmentDepartment of Computer Science and Engineeringen_US
dc.identifier.facultyEngineeringen_US
dc.identifier.placeMoratuwa. Sri Lankaen_US
dc.identifier.proceedingProceedings of the CS & ES Conference 2011en_US
dc.identifier.urihttp://dl.lib.uom.lk/handle/123/19659
dc.identifier.year2011en_US
dc.language.isoenen_US
dc.publisherComputer Science & Engineering Society c/o Department of Computer Science and Engineering, University of Moratuwa.en_US
dc.subjectMachine learningen_US
dc.subjectClassificationen_US
dc.subjectCUDAen_US
dc.subjectLogistic regressionen_US
dc.subjectGPGPUen_US
dc.titleGpu acceleration of logistic regression with cudaen_US
dc.typeConference-Full-texten_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
GPU acceleration of logistic regression with CUDA.pdf
Size:
1.11 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: