The public sentiment analysis within big data distributed system for stock market prediction– a case study on colombo stock exchange

dc.contributor.authorMalawana, MADHP
dc.contributor.authorRathnayaka, RMKT
dc.contributor.editorKarunananda, AS
dc.contributor.editorTalagala, PD
dc.date.accessioned2022-11-16T04:34:41Z
dc.date.available2022-11-16T04:34:41Z
dc.date.issued2020-12
dc.description.abstractStock price prediction plays an important role on the journey of investors on the stock market. The prices of the company stocks on the market are performed by different deliverables. Social media data sets, news sites, feedback and reviews are some kind of online tools that can affect the stock market. It is often worth using this context to predict the performance of market shares. We take the advantage of Sentiment analysis on Market related announcement and respective public opinions for stock market trend predictions for more accurate recommendations. Sentiment Analysis is a machine learning program for extracting opinions from a text section that is designed to support any product, company, individual or other entity (positive, negatively, neutral). In this research calculations and data processing were performed within machine learning approach with use of Spark model on Google cloud platform. Among most of the stock prediction researches, only few researchers have done their researches on sentiment analysis within big data distributed environment. Logistic Regression and Naïve Bayes perform well in sentiment classification. Main finding of this research is that public opinion significantly influences the fluctuations of market forces and economic factors such as monetarism, government reforms, unforeseen pandemics, interest rates, public trust, and faith in bond market trust. The detection of the feelings pattern will enhance the market prediction as it ensures the consistency of decision.en_US
dc.identifier.citationM. V. D. H. P. Malawana and R. M. K. T. Rathnayaka, "The Public Sentiment analysis within Big data Distributed system for Stock market prediction– A case study on Colombo Stock Exchange," 2020 5th International Conference on Information Technology Research (ICITR), 2020, pp. 1-6, doi: 10.1109/ICITR51448.2020.9310871.en_US
dc.identifier.conference5th International Conference in Information Technology Research 2020en_US
dc.identifier.departmentInformation Technology Research Unit, Faculty of Information Technology, University of Moratuwa.en_US
dc.identifier.doidoi: 10.1109/ICITR51448.2020.9310871en_US
dc.identifier.facultyITen_US
dc.identifier.placeMoratuwa, Sri Lankaen_US
dc.identifier.proceedingProceedings of the 5th International Conference in Information Technology Research 2020en_US
dc.identifier.urihttp://dl.lib.uom.lk/handle/123/19522
dc.identifier.year2020en_US
dc.language.isoenen_US
dc.publisherFaculty of Information Technology, University of Moratuwa.en_US
dc.relation.urihttps://ieeexplore.ieee.org/document/9310871en_US
dc.subjectStock marketen_US
dc.subjectSentiment analysisen_US
dc.subjectBig dataen_US
dc.subjectDistributed environmenten_US
dc.subjectMachine learningen_US
dc.titleThe public sentiment analysis within big data distributed system for stock market prediction– a case study on colombo stock exchangeen_US
dc.typeConference-Full-texten_US

Files

Collections