Enhancing ddos attack detection via blending ensemble learning

dc.contributor.authorAmalraj, CRJ
dc.contributor.authorMadhusankha, PGG
dc.contributor.editorPiyatilake, ITS
dc.contributor.editorThalagala, PD
dc.contributor.editorGanegoda, GU
dc.contributor.editorThanuja, ALARR
dc.contributor.editorDharmarathna, P
dc.date.accessioned2024-02-06T06:27:51Z
dc.date.available2024-02-06T06:27:51Z
dc.date.issued2023-12-07
dc.description.abstractThis research focuses on identifying DDoS attacks using an ensemble learning approach that incorporates blending techniques. We developed an innovative methodology by selecting the 21 most significant features from the CIC-DDoS2019 dataset. To improve classification accuracy, we used a two-layer blending ensemble technique. In the first layer, we combined Decision Tree, Logistic Regression, and KNN classifiers, while the second layer used a Random Forest classifier. The model achieved exceptional results, with a 99.94% accuracy score and a 97.35% F1 score for detecting DDoS attacks accurately. We also created a user-friendly web portal to make the model accessible for individuals in network security, regardless of their technical expertise. This approach advances DDoS attack detection and enhances usability for users in the field of network security.en_US
dc.identifier.conference8th International Conference in Information Technology Research 2023en_US
dc.identifier.departmentInformation Technology Research Unit, Faculty of Information Technology, University of Moratuwa.en_US
dc.identifier.emailamalraj@uom.lken_US
dc.identifier.emailmadhusankhamrtit97@gmail.comen_US
dc.identifier.facultyITen_US
dc.identifier.pgnospp. 1-6en_US
dc.identifier.placeMoratuwa, Sri Lankaen_US
dc.identifier.proceedingProceedings of the 8th International Conference in Information Technology Research 2023en_US
dc.identifier.urihttp://dl.lib.uom.lk/handle/123/22185
dc.identifier.year2023en_US
dc.language.isoenen_US
dc.publisherInformation Technology Research Unit, Faculty of Information Technology, University of Moratuwa.en_US
dc.subjectDDoS attacksen_US
dc.subjectCIC-DDoS2019en_US
dc.subjectBlending ensembleen_US
dc.titleEnhancing ddos attack detection via blending ensemble learningen_US
dc.typeConference-Full-texten_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Enhancing DDoS Attack Detection via.pdf
Size:
670.47 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections