Plastic properties estimation of steel alloys using machine learning of ultrasonic data

dc.contributor.authorDe Costa, M. C. S.
dc.contributor.authorSivahar, V.
dc.contributor.authorSilva, A. T. P.
dc.contributor.editorSivahar, V.
dc.date.accessioned2025-02-07T08:20:00Z
dc.date.available2025-02-07T08:20:00Z
dc.date.issued2024
dc.description.abstractSteel alloys are crucial in various industries due to their enhanced properties compared to plain-carbon steel. Alloying elements are added to steels to improve specific properties such as strength, wear, and corrosion resistance. These elements include chromium, cobalt, columbium, molybdenum, manganese, nickel, titanium, tungsten, silicon, and vanadium. This research on “Plastic Properties Estimation of Steel Alloys using Machine Learning of Ultrasonic Data” discusses a data-driven approach to estimate the plastic properties of steel alloys. This involves using machine learning algorithms to analyze ultrasonic data, thereby providing an alternative method for predicting the plastic properties namely yield strength, ultimate tensile strength and elongation. Such advancements could significantly enhance our ability to tailor the properties of steel alloys for specific applications, further increasing their importance in various industries.en_US
dc.identifier.conferenceMATERIALS ENGINEERING SYMPOSIUM ON INNOVATIONS FOR INDUSTRY 2024 Sustainable Materials Innovations for Industrial Transformationsen_US
dc.identifier.departmentDepartment of Materials Science and Engineeringen_US
dc.identifier.emailvsivahar@uom.lken_US
dc.identifier.facultyEngineeringen_US
dc.identifier.pgnosp. 22en_US
dc.identifier.placeMoratuwa, Sri Lankaen_US
dc.identifier.proceedingProceedings of materials engineering symposium for innovations in industry – 2024 (online)en_US
dc.identifier.urihttp://dl.lib.uom.lk/handle/123/23462
dc.identifier.year2024en_US
dc.language.isoenen_US
dc.publisherDepartment of Materials Science and Engineering, University of Moratuwaen_US
dc.subjectultrasonicsen_US
dc.subjectMachine Learningen_US
dc.subjectPlastic propertiesen_US
dc.titlePlastic properties estimation of steel alloys using machine learning of ultrasonic dataen_US
dc.typeConference-Abstracten_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
22.pdf
Size:
194.58 KB
Format:
Adobe Portable Document Format
Description:
Plastic properties estimation of steel alloys using machine learning of ultrasonic data

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections