Enhanced timetable scheduling: a high-performance computational approach

dc.contributor.authorSovis, A
dc.contributor.authorPatikirige, C
dc.contributor.authorPandigama, Y
dc.contributor.editorPiyatilake, ITS
dc.contributor.editorThalagala, PD
dc.contributor.editorGanegoda, GU
dc.contributor.editorThanuja, ALARR
dc.contributor.editorDharmarathna, P
dc.date.accessioned2024-02-05T08:44:21Z
dc.date.available2024-02-05T08:44:21Z
dc.date.issued2023-12-07
dc.description.abstractTimetable scheduling is a complicated, expensive and resource-intensive Optimization Problem. This project aims to suggest a solution to this problem using multiple strategies. The core strategy is to use Artificial Intelligence and Machine Learning to optimize a timetable. The result is optimized further by reapplying this optimization mechanism iteratively without aiming to build a perfect result in a single iteration. The project uses the concepts of High-Performance Computing and Cluster Computing to provide flexibility and efficiency on a hardware level. These form the basis of Project Almanac: a robust and flexible timetable optimization architecture. Project Almanac aims to generate a ‘good enough’ timetable by adjusting the expenses according to the end-user requirements. Alternatively, the solution also intends to offer a faster, cheaper and more flexible hardware-software architecture to generate optimized timetables for diverse applications.en_US
dc.identifier.conference8th International Conference in Information Technology Research 2023en_US
dc.identifier.departmentInformation Technology Research Unit, Faculty of Information Technology, University of Moratuwa.en_US
dc.identifier.emailakashsovis@gmail.comen_US
dc.identifier.emailchathunipatikirige@gmail.comen_US
dc.identifier.emailpandig911@gmail.comen_US
dc.identifier.facultyITen_US
dc.identifier.pgnospp. 1-6en_US
dc.identifier.placeMoratuwa, Sri Lankaen_US
dc.identifier.proceedingProceedings of the 8th International Conference in Information Technology Research 2023en_US
dc.identifier.urihttp://dl.lib.uom.lk/handle/123/22159
dc.identifier.year2023en_US
dc.language.isoenen_US
dc.publisherInformation Technology Research Unit, Faculty of Information Technology, University of Moratuwa.en_US
dc.subjectArtificial intelligenceen_US
dc.subjectCluster computingen_US
dc.subjectHigh- performance computingen_US
dc.subjectMachine learningen_US
dc.subjectOptimization problemen_US
dc.titleEnhanced timetable scheduling: a high-performance computational approachen_US
dc.typeConference-Full-texten_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Enhanced Timetable Scheduling.pdf
Size:
317.73 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections