Determining the invoicing dates for raw material order and finish product dispatch using neural networks under exchange rate volatility

dc.contributor.authorWeerasinghaa, JP
dc.contributor.authorBandara, YM
dc.contributor.authorEdirisingheb, PM
dc.date.accessioned2023-05-12T08:39:35Z
dc.date.available2023-05-12T08:39:35Z
dc.date.issued2021
dc.description.abstractThe gains from international supply chains are highly affected by the exchange rate fluctuations in the foreign exchange market. Traditional forecasting methods have not been very useful, and as a result, business firms tend to use hedging or forward contracts to mitigate the exchange rate risk. This research focuses on using machine learning models to forecast the exchange rate for future decision-making in business. This paper uses both time-series data and the categorical data with the LSTM (Long Short-Term Memory) Neural Network Model to tackle both linear and non-linear data on monetary fundamentals and derives the best dates for invoicing in the international transaction using data of a manufacturing firm. Results show that using the predictions of the LSTM model to decide the invoicing dates for international transactions delivers foreign exchange gain with a better success rate than selecting random dates for both import and export.en_US
dc.identifier.citationWeerasingha, J. P., Bandara, Y. M., & Edirisinghe, P. M. (2023). Determining the invoicing dates for raw material order and finish product dispatch using neural networks under exchange rate volatility. International Journal of Logistics Research and Applications, 26(2), 211–231. https://doi.org/10.1080/13675567.2021.1945018en_US
dc.identifier.databaseTaylor & Francis Onlineen_US
dc.identifier.doihttps://doi.org/10.1080/13675567.2021.1945018en_US
dc.identifier.issn1367-5567en_US
dc.identifier.issue2en_US
dc.identifier.journalhttps://doi.org/10.1080/13675567.2021.1945018en_US
dc.identifier.pgnos211-231en_US
dc.identifier.urihttp://dl.lib.uom.lk/handle/123/21048
dc.identifier.volume26en_US
dc.identifier.year2021en_US
dc.language.isoen_USen_US
dc.publisherTaylor and Francisen_US
dc.subjectImport and export invoicing datesen_US
dc.subjectexchange rate forecastingen_US
dc.subjectVAR forecastingen_US
dc.subjectnews effects Introductionen_US
dc.subjectLSTM Neural networksen_US
dc.titleDetermining the invoicing dates for raw material order and finish product dispatch using neural networks under exchange rate volatilityen_US
dc.typeArticle-Full-texten_US

Files