Detecting tabnabbing attacks via an rl-based agent

dc.contributor.authorFonseka, A
dc.contributor.authorPashenna, P
dc.contributor.authorAriyadasa, SN
dc.contributor.editorPiyatilake, ITS
dc.contributor.editorThalagala, PD
dc.contributor.editorGanegoda, GU
dc.contributor.editorThanuja, ALARR
dc.contributor.editorDharmarathna, P
dc.date.accessioned2024-02-05T03:41:52Z
dc.date.available2024-02-05T03:41:52Z
dc.date.issued2023-12-07
dc.description.abstractTabnabbing attacks exploit user behavior in web browsers, deceiving users by altering content in inactive tabs to appear legitimate, leading to data disclosure or unintended actions. This research evaluates the effectiveness of Reinforcement Learning (RL) in detecting Tabnabbing attacks at the web browser level, presenting a proactive defense mechanism against this cyber threat. The study began with a literature review to find the top 5 critical features of Tabnabbing attacks and were extracted using a publicly available dataset from "Phishpedia". Data preprocessing is conducted to handle missing and incorrect data, resulting in a refined dataset. The RL agent is designed using the Deep QNetwork (DQN) algorithm, which effectively handles highdimensional state spaces. The evaluation of the RL agent demonstrates promising results. However, there is room for improvement requiring further research and model tuning.en_US
dc.identifier.conference8th International Conference in Information Technology Research 2023en_US
dc.identifier.departmentInformation Technology Research Unit, Faculty of Information Technology, University of Moratuwa.en_US
dc.identifier.emailcst18021@std.uwu.ac.lken_US
dc.identifier.emailiit18046@std.uwu.ac.lken_US
dc.identifier.emailsubhash@uwu.ac.lken_US
dc.identifier.facultyITen_US
dc.identifier.pgnospp. 1-6en_US
dc.identifier.placeMoratuwa, Sri Lankaen_US
dc.identifier.proceedingProceedings of the 8th International Conference in Information Technology Research 2023en_US
dc.identifier.urihttp://dl.lib.uom.lk/handle/123/22153
dc.identifier.year2023en_US
dc.language.isoenen_US
dc.publisherInformation Technology Research Unit, Faculty of Information Technology, University of Moratuwa.en_US
dc.subjectCybersecurityen_US
dc.subjectTabnabbingen_US
dc.subjectReinforcement learningen_US
dc.subjectPhishingen_US
dc.subjectDQNen_US
dc.titleDetecting tabnabbing attacks via an rl-based agenten_US
dc.typeConference-Full-texten_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
DETECTING TABNABBING ATTACKS.pdf
Size:
316.42 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections