Browsing by Author "Wijesinghe, LP"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
- item: Conference-AbstractA Generalized preprocessing and feature extraction platform for scalp EEG signals on FPGAWijesinghe, LP; Wickramasuriya, DS; Pasqual, AABrain-computer interfaces (BCIs) require real-time feature extraction for translating input EEG signals recorded from a subject into an output command or decision. Owing to the inherent difficulties in EEG signal processing and neural decoding, many of the feature extraction algorithms are complex and computationally demanding. Presently, software does exist to perform real-time feature extraction and classification of EEG signals. However, the requirement of a personal computer is a major obstacle in bringing these technologies to the home and mobile user affording ease of use. We present the FPGA design and novel architecture of a generalized platform that provides a set of predefined features and preprocessing steps that can be configured by a user for BCI applications. The preprocessing steps include power line noise cancellation and baseline removal while the feature set includes a combination of linear and nonlinear, univariate and bivariate measures commonly utilized in BCIs. We provide a comparison of our results with software and also validate the platform by implementing a seizure detection algorithm on a standard dataset and obtained a classification accuracy of over 96%. A gradual transition of BCI systems to hardware would prove beneficial in terms of compactness, power consumption and much faster response to stimuli.
- item: Conference-AbstractLayered depth image based HEVC multi-view codecKirshanthan, S; Lajanugen, L; Panagoda, PND; Wijesinghe, LP; De Silva, DVSX; Pasqual, AAMulti-view video has gained widespread popularity in the recent years. 3DTV, surveillance, immersive teleconferencing and free view-point television are few notable applications of multi-view video. Excessive storage and transmission bandwidth requirements are the major challenges faced by the industry in facilitating multi-view video applications. This paper presents efficient tools for coding of multi-view video based on the state of the art single view video coding standard H.265/HEVC (High Efficiency Video Coding). Our approach employs the LDI (Layered Depth Image) representation technique which is capable of compactly representing 3D scene content. We propose techniques and algorithms for LDI construction, view synthesis, efficient coding of LDI layers and associated auxiliary information. Subjective assessments indicate that our approach offers more than 50% reduction in bitrate compared to HEVC simulcast for the same subjective quality under practical operating bitrates.