Browsing by Author "Rossetto, T"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
- item: Article-Full-textEngineering surveys of Sri Lankan schools exposed to tsunami(2023) Cels, J; Rossetto, T; Dias, P; Thamboo, J; Wijesundara, K; Baiguera, M; Del Zoppo, MThe 2004 Indian Ocean tsunami affected 5% of Sri Lanka’s schools, severely damaging 108 and destroying 74. The catastrophe highlighted the critical role of schools in providing educational continuity during community recovery. Sri Lanka has since rehabilitated and rebuilt most of the destroyed schools along the coastline. However, there is a limited understanding of current levels of school exposure to tsunami. This hampers preparedness and risk reduction interventions that can improve community and educational tsunami resilience. This paper presents a multi-disciplinary school exposure database relevant to both vulnerability and loss modelling. The repository includes data on 38 schools and 86 classroom buildings, surveyed across the coastal districts of Ampara, Batticaloa and Galle in Sri Lanka, which were heavily affected by the 2004 tsunami. A new engineering rapid visual survey tool is presented that was used to conduct the physical assessment of schools for the exposure repository. School damage mechanisms observed in past tsunami inform the survey forms, which are designed to capture information at both school compound and building levels. The tsunami engineering survey tools are universally applicable for the visual assessment of schools exposed to tsunami. The surveys show that most Sri Lankan school buildings can be classified into three building archetypes. This means that future risk assessments can be conducted considering a small number of index buildings that are based on these archetypes with differing partition arrangements and structural health conditions. The surveys also raise three significant concerns. Firstly, most schools affected by the 2004 tsunami remain in the same exposed locations without any consideration for tsunami design or strengthening provisions. Secondly, Sri Lankan schools are fragile to tsunami loading and many of the schools in the Galle district suffer from severe corrosion, which will further affect their tsunami vulnerability. Thirdly, schools do not appear prepared for tsunami, and do not have adequate tsunami warnings nor evacuation protocols in place. These observations raise the urgent need to mitigate tsunami risk, including a holistic plan for tsunami retrofitting and for interventions to improve the tsunami preparedness of schools in Sri Lanka.
- item: Article-Full-textInfluence of exterior infill walls on the performance of RC frames under tsunami loads: Case study of school buildings in Sri Lanka(Elsevier, 2021) Zoppo, MD; Wijesundara, K; Rossetto, T; Dias, P; Baiguera, M; Ludovico, MD; Thamboo, J; Prota, AThis paper assesses the structural performance of RC frame buildings subjected to tsunami-induced loads, accounting for the influence of exterior masonry infill walls on the overall structural performance. Both the in-plane and out-of-plane contributions of masonry infill walls are considered in the analysis. To illustrate the importance of accounting for exterior infill walls in the response of structures to tsunami, two case study buildings are considered and modelled in 3D. The first case study is a typical two-storey school building in Sri Lanka, and the second is a modified version of this design configuration proposed in Sri Lanka after the 2004 Indian Ocean Tsunami to provide more redundancy against scour. Through these case studies, the effect of the non-uniform distribution of infill walls in the building and their failure (or “breakaway”) on building performance is considered. The building performance is characterized by a number of response parameters (i.e., first yielding, development of two hinges, and shear failure in ground floor columns). The paper shows that the in-plane behaviour of exterior infill walls increases the flexural capacity and lateral stiffness of the structure, as would be expected. However, it also shows that an assumption of non-breakaway infill walls consistently leads to premature structural failure mechanisms, associated with the concentration of drag forces on seaward columns only. The results demonstrate that a good estimation of the location and occurrence of shear failure in structural elements can only be achieved by explicitly considering the out-of-plane behaviour and failure of exterior infill walls during an incremental tsunami load analysis. Finally, the Froude number assumed for the analysis is seen to strongly affect the performance of both structural and non-structural components, highlighting the importance of choosing realistic tsunami properties to perform a reliable capacity assessment.
- item: Article-Full-textA New relative risk Index for hospitals exposed to Tsunami(Frontiers Media S.A., 2021) Baiguera, M; Rossetto, T; Palomino, J; Dias, P; Lopez-Querol, S; Siriwardana, C; Hasalanka, H; Ioannou, I; Robinson, DThe failure of hospitals in recent tsunami have caused extensive social and economic losses. A simple but quantitative approach is required to assess the resilience of healthcare systems to tsunami, which relates not only to hospital building integrity, but also to maintaining hospital functionality. This paper proposes a new tsunami relative risk index (TRRI) that quantifies the impact of tsunami on critical units, (e.g. Intensive Care Unit, Maternity Ward, etc) in individual hospitals, as well as the impact on service provision across a network of hospitals. A survey form is specifically developed for collecting of field data on hospitals for the TRRI evaluation. In its current form TRRI is designed for hospital buildings of reinforced concrete construction, as these are the building types most commonly used worldwide for housing critical units. The TRRI is demonstrated through an application to three hospitals located along the southern coast of Sri Lanka. The TRRI is evaluated for three potential tsunami inundation events and is shown to be able to identify issues with both the building and functional aspects of hospital critical units. Three “what-if” intervention scenarios are presented and their effect on the TRRI is assessed. Through this exercise, it is shown that the TRRI can be used by decision makers to simply explore the effectiveness of individual and combined interventions in improving the tsunami resilience of healthcare provision across the hospital system.