ISERME - 2024
Permanent URI for this collectionhttp://192.248.9.226/handle/123/22912
Browse
Browsing ISERME - 2024 by Author "Amarasinghe, A.M.P.C."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
- item: Conference-Full-textAssessment of biodiesel production potential and capacity analysis utilizing animal fat waste(Division of Sustainable Resources Engineering, Hokkaido University, Japan, 2024) Upamali, W..M.A.; Wijesekara, E.R.J.M.D.D.P.; Amarasinghe, A.M.P.C.; Iresha, H.; Elakneswaran, Y.; Dassanayake, A.; Jayawardena, C.New Anthony's Farm, a major chicken producer in Sri Lanka, generates significant wastewater during production. This study aims to find a solution for the sludge produced in their treatment plant. Animal fats, a common waste in various industries, require expensive treatment due to environmental regulations. They mainly consist of triglycerides (90-95%), which are further made up of fatty acids like saturated (SFAs), monounsaturated (MUFAs), and polyunsaturated (PUFAs). Animal fat waste offers valuable opportunities for industrial use, but its improper disposal poses significant environmental threats. Sustainable management and utilization of this waste are crucial to protect the environment and extract valuable resources. First, an FFA (Free Fatty Acids) test was done for the top and bottom animal waste fat samples taken from the fat separation Dissolved Air Floating unit in the wastewater treatment plant in 'Anthony's Farm. The NaOH base with the Phenolphthalein indicator titration method was used for this FFA identification. After that, acid treatment was performed to reduce the FFA value of these samples, 60 0C hot water washing was done to purify the animal waste fat sample, and biodiesel was produced by transesterification. Direct transesterification was not obtained for the bottom sample, so the resulting liquid layer was centrifuged at 3000 rpm for 15 minutes and trans-esterified. After that, both samples were used to produce bioethanol. There, the top sample was directly used for bioethanol production without pretreatment, and bioethanol was produced using the glycerol layer of the bottom sample. The acid treatment was done with an H2SO4 Acid-to-fat ratio of 12:1, Temperature around 64°C, and pH - around 7, and it was reduced the FFA value of the top sample from 20.72% to 12.60%, and the initial FFA value of the bottom sample, which was 3.36%, was reduced to 2.80%. Considering this FFA value, the bottom sample seems to have more potential for biodiesel production. Also, the flash point of the biodiesel produced in this way was measured using the Flashpoint analyser, and it was found to be 55.5 0C.
- item: Conference-Full-textDistillery spent wash as an alternative fuel in boilers and potash recovery from that ash remaining in boilers(Division of Sustainable Resources Engineering, Hokkaido University, Japan, 2024) Warnakulasooriya, G.A.P.K.G.G.; Amarasinghe, A.M.P.C.; Lankathilake, L.J.M.U.; Wijesekara, E.R.J.M.D.D.P.; Iresha, H; Elakneswaran, Y; Dassanayake, A; Jayawardena, CWaste management stands as a critical global environmental challenge, with a growing emphasis on waste avoidance and the generation of revenue through byproduct recovery. Pollution prevention strategies aim to minimize waste generation, while waste minimization efforts focus on reducing waste volume or toxicity, often through water recycling, process modification, and byproduct recovery. In this context, the utilization of distillery effluent in agriculture presents an opportunity to save on fertilizer costs, enhance agricultural output, and mitigate pollution. However, molasses-based distilleries, along with their primary product, alcohol, generate significant volumes of wastewater known as spent wash. Improper disposal of spent wash into water bodies or land leads to a host of environmental issues. Consequently, recent efforts have shifted towards waste minimization and revenue generation through byproduct recovery. This study focuses an approach to address the challenge of distillery spent wash management by drying the spent wash and utilizing the resulting dried solids as an alternative fuel for boilers. The distillery spent wash contains approximately 14.6% solid content, and the dried solids have a gross calorific value of 13840 J/g. Furthermore, the dried solids possess an ash content of 2.26%, with the ash containing a notable 36.7% potassium oxide content. By transforming distillery spent wash into a valuable resource for boiler fuel, this research not only addresses waste management concerns but also offers a sustainable solution for revenue generation. The utilization of dried solids as an alternative fuel for boilers contributes to reducing environmental pollution associated with improper spent wash disposal while offering a viable source of renewable energy. This study underscores the potential of waste-to-energy initiatives in fostering sustainable waste management practices and enhancing economic viability in the distillery sector.